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Abstract. The pion electromagnetic form factor in the space- and time-like regions are for the
first time analyzed within a light-front model, that allows one to address the fundamental issue of
non-valence components of the pion and photon wave functions. Our relativistic approach is based
on a microscopic vector meson dominance model for the dressed quark-photon vertex, and on a
simple parametrization for the emission /absorption of a pion by a quark. The comparison with the
experimental data shows a high quality agreement in the whole kinematical region explored.
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In this contribution, some highlights on i) physical motivations, ii) ingredients and
iii) comparison with the data of our approach for investigating the pion electromagnetic
(em) form factor are presented. All the details can be found in our recent papers [1].

The choice of investigating the pion em form factor, in the whole kinematical region
explored by a virtual photon, is dictated by the possibility to go beyond a simple
description in terms of the valence component of the pion state. In order to accomplish
this, we need a meaningful Fock expansion of the pion state, like the one obtained within
the light-front (LF) dynamics [2].

The covariant expression [3] for matrix elements of the em current of hadrons, devised
by Mandelstam [3], represents the starting point of our analysis. In the time-like (TL)
region it reads

jμ = −ıe
∫

d4k
(2π)4Tr

[
SQ(k−Ph)λh(k−Ph,Ph)S(k−q) Γμ(k,q) S(k)λ h(k,Ph)

]
(1)

where S(p) = 1/(/p−m+ ıε) is the constituent quark propagator struck by the photon,
SQ(p) the propagator of the spectator constituent quark (for a meson) or diquark (in a
simple picture of baryons), Γμ(k,q) the quark-photon vertex, qμ the virtual photon mo-
mentum, λh(k,Ph) the Bethe-Salpeter amplitude of the hadron; Pμ

h and Pμ
h

are the hadron

momenta. In the space-like (SL) region Pμ
h → −Pμ

h , h→ h′ and the initial hadron ver-
tex is λh(−k,Ph). Unfortunately, a fully field-theoretical description of the quark-photon
and quark-hadron vertexes is still far from being a realistic one. Therefore we have to
introduce some approximations, based on physical motivations or convenience (to speed



up the calculations), to be checked a posteriori through a very detailed comparison with
the existing data (we adopt linear plots for comparing our results with the data, and not
only the widely adopted log-plot). The chain of approximations begins with an integra-
tion over the LF variable k− in Eq. (1), retaining only the contributions from the poles of
fermionic propagators. Within a LF approach, one can decompose the fermionic propa-
gator in two contributions: i) an on-shell term that has a pole in the LF variable k− and
ii) an instantaneous term, with a characteristic independence upon the LF variable k−.
Following the previous approximation and introducing the mentioned decomposition,
the matrix element in Eq. (1) has contributions with no instantaneous terms and contri-
butions with at least one instantaneous term. Our second approximation is represented
by the application of a vector meson dominance (VMD) model for the quark-photon
vertex. In our approach the VMD is implemented at the level of vertexes [1], namely the
plus component of Γμ(k,q) is given by

Γ+(k,q) =
√

2∑
n,λ

[
ελ · V̂n(k,k−Pn)

]
Λn(k,Pn)

[ε+
λ ]∗ fVn

(q2 −M2
n + ıMnΓ̃n(q2))

(2)

where fVn is the decay constant of the n-th vector meson into a virtual photon, a calcu-
lated quantity in our model, Mn (ελ ) is the mass (the polarization) of the VM, Γ̃n(q2) =
Γnq2/M2

n (for q2 > 0) the corresponding total decay width,
[
ελ · V̂n(k,k−Pn)

]
Λn(k,q)

is VM vertex function, with V̂ μ
n (k,k−q) = γμ−(kμon−(q−k)μon)/(M0(k+,k⊥;q+,q⊥)+

2m) the Dirac structure that generates the proper Melosh rotations for 3S1 states, and
Λn(k,q) the momentum-dependent part of the Bethe-Salpeter amplitude. The next ap-
proximation will be applied to the quark-pion and quark-VM vertexes entering the on
k−-shell contribution to Eq. (1) and the instantaneous one. In particular, for the meson
vertex evaluated on the k−-shell, the proportionality to the 3D LF wave function for
mesons has been adopted, using the meson wave functions obtained in [4], while for
the meson vertexes evaluated in the kinematical region relevant for the instantaneous
contribution a one-gluon approximation has been adopted, see [1]. Such an approxima-
tion results in a different (from the one used in the k−-shell contribution) proportionality
between the meson vertex and the 3D meson wave function. Given the overall normal-
ization, obtained through the charge normalization, our calculations depend only upon
the ratio of the constant of proportionality for the pion (cπ ) and the one for the vector
mesons (cVM). It is worth noting that only one constant has been assumed for all the
vector mesons considered in our calculations (up to 20 vector mesons).

The hypothesys of a vanishing pion mass greatly simplifies our calculations. A model
for the probability of the valence component, essential for the VMD contribution, has
been developed [1]. For the emission/absorption of a pion by a quark we followed [5].

In Figs. 1 and 2, our theoretical model is compared with the experimental data, in
the range −10 (GeV/c)2 < q2 < 10 (GeV/c)2. In our calculations the only adjusted
parameters are the constant wVM = cVM/cπ and the hadronic widths for the decays of
the VM with mass > 2.1 GeV . All these widths have been chosen equal to 0.15 GeV ,
i.e. of the same order of magnitude of the widths of the VM’s with mass ≤ 2.1 GeV .

The very nice results, shown in Figs. 1 and 2, encourage to apply our model to the em
form factors of the nucleon, in the space- and time-like regions.
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FIGURE 1. Space- and time-like form factor of the pion vs q2. Experimental data from Ref. [6]. Solid
line: calculation with the pion wave function from the model of Ref. [4], adopting wVM = −0.7 in the
instantaneous term (see text). Dashed line: the same as the solid line, but with the asymptotic pion wave
function [2].
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FIGURE2. (Left) Pion form factor in the ρ-peak region. Solid line: calculation with the pion wave func-
tion from the model of Ref. [4], adopting wVM = −1.5 in the instantaneous term (see text). Dashed line:

the same as for the solid line , but with wVM =−0.7. (Right) The ratio Rπ(q2) = Fπ(q2)/
[
1/(1−q2/m2

ρ)
]

vs q2, in the SL region. Full dots: data from [6]; squares: TJLAB data [7].
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